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Abstract

Circuit partitioning is a very extensively studied prob-
lem. In this paper we formulate the problem as a nonlinear
program (NLP). The NLP is solved for the objective of min-
imum cutset size under the constraints of timing. Our pro-
posed methodology easily extends to multiple constraints
that are very dominant in the design of large scale VLSI
Systems. The NLP is solved using the commercial LP/NLP
solver MINOS. We have done extensive testing using large
scale RT level benchmarks and have shown that our meth-
ods can be used for exploring the design space for obtaining
constraint satisfying system designs. We also provide ex-
tensions for solving system design problems where a choice
between multiple technologies, packaging components, per-
formance, cost, yield, and more can be the constraints for
design related decisions.

1 Introduction
Ever changing complexity of VLSI systems requires

support from CAE tools for automated decision making ca-
pability. Also, important design related decisions should be
made early in the design process. This requires tools that
have the capability to explore design choices, make trade-
offs between various constraints, and select/reject design
options so as to obtain a very high quality constraint sat-
isfying solution. Motivated with this task of automating the
system design process we have conducted this research for
system level partitioning problems.

In system level partitioning, a designer is presented with
an application (design), a set of requirements, a set of op-
tions for realizing the design, and a set of constraints for
implementing or physically realizing the overall design. In
a typical design such parameters would include choice of
packaging options, i.e., ICs from various technologies, their
area and pin constraints, their costs, timing requirements on
the overall design, yield, testability, and more. In the pres-
ence of such choices the designer must try to optimize the
resources such that the final design implementation satisfies
as many constraints as possible.
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x
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Figure 1. Local and Global Optimum

A large design can be implemented using one large ASIC
chip, or a collection of devices packaged in a hierarchical
manner. When the later is chosen, the design has to be par-
titioned into two or more segments and implemented using
correct packages. Partitioning of a design in the presence
of multiple constraints is an important and hard combina-
torial problem. When the constraint set starts becoming
large, it is very difficult to make correct design decisions.
In this paper, we have modeled the problem of partitioning
in the presence of multiple constraints as a non-linear pro-
gramming problem and have presented effective solutions
for partitioning designs in the presence ofareaandtiming
constraints.

1.1 Combinatorial Optimization
Generally a combinatorial optimization (CO) problem is

an optimization problem of the form
minimize f(x)

subject to gi(x) � 0 i = 1; : : : ;m: (1)
The functionf(x) is the objective function and the set of
conditionsgi(x) � 0, i = 1; : : : ;m, are the constraints of
the problem. Note that the number of constraints can be
very large. Every vectorx that satisfies the constraints is
a solutionto the problem. A solution that minimizesf(x)
over the set of all solutions is anoptimal solution. A vector
x0 is a local optimumif and only if there exists a neighbor-
hoodV (x0) of x0 such thatx0 is a global optimumof the
problem. Figure 1 illustrates this concept with a function of
a single variable[12].

The forms thatf(x) andgi(x) take determine the type
of CO problem. Iff(x) is linear, the problem is a linear
program(LP), while iff(x) is non-linear, the problem is a
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non-linear program(NLP).f(x) may have both linear and
non-linear elements. The constraintsgi(x) can also be lin-
ear, non-linear, or a combination of both. A special case
of non-linear CO is when the terms off(x) are quadratic
and the constraints are linear. This is called aquadratic
program(QP). If f(x) does not exist and only constraints
are present the problem becomes aconstraint satisfiability
problem(CSP). Equations 2 and 3 show the forms of linear
and quadratic programs respectively.

minimize cTx subject to Ax � b (2)

minimize
1

2
xTDx+ cTx subject to Ax � b (3)

In equations 2 and 3,cT is the transpose of the coeffi-
cients of the linear optimization function,x is the solution
variables,A is the constraint matrix of the linear constraints,
b is the right hand side of the linear constrains,D is the co-
efficient matrix of the quadratic optimization function, and
xT is the transpose ofx.

Many fast methods exist to solve an LP[12] as do meth-
ods to solve a NLP if it isconvex, that is, every local op-
timum is also a global optimum. However, there are no
known methods to find a global optimum for a non-convex
NLP problem. Only a local optimum is guaranteed to be
found in this case. The graph bipartitioning problem when
formulated as a CO problem is non-convex.

We solve our problem with the commercial LP/NLP
solver MINOS 5.4. MINOS can solve large scale linear
and non-linear programs and takes advantage of sparsity of
matrices[13].

2 Partitioning Related Research
The partitioning problem with area constraints falls into

the class of NP-complete problems [2]. Various heuristic
approaches have been proposed.

Johannes[8] gives an overview of the partitioning prob-
lem. He divides partitioning algorithms into five categories:
bipartitioning, k-way partitioning, performance driven par-
titioning, layout driven partitioning, and partitioning with
replication. Furthermore, the solution techniques can be
classified as constructive or iterative and deterministic or
probabilistic.

The Kernighan and Lin (KL) algorithm [9] is a popu-
lar iterative improvementbipartitioning algorithm. Dutt[2]
introduces a method calledQuick Cut that reduces the num-
ber of node pairs examined in the KL algorithm. Quickcut
searches on onlyd2 node pairs to find the greatest swap
gain whered is the max degree of any node in the graph.
The complexity of Quickcut isO(e � logn) wheren is the
number of nodes ande is the number of edges.

The Fiduccia and Mattheyses (FM) heuristic [5] will per-
form bipartitioning on nets by representing the circuit as a
hypergraph. The runtime complexity of FM method is lin-
ear in the size of number of pins in the VLSI circuit. Iter-
ative improvement techniques such as KL and FM perform

well for small to medium size circuits but will produce in-
creasingly poor results as the problem size rises. Clustering
techniques attempt to reduce the problem size such that they
can be efficiently solved by FM or KL.

Hagen and Kahng[6] introduce a new method for clus-
tering circuits to reduce the number of nodes that require
consideration calledRW �ST . After clustering, FM is ex-
ecuted on the reduced circuit. TheRW �ST methodology
computes a circuit clustering based on a random walk in the
netlist graph. A cycle identified in the random walk should
correspond to a natural cluster. After all cycles have been
identified thesameness of each pair of nodesu andv is
determined. Thesameness measure determines for every
nodev how often nodeu occurs in a cycle originating at
v. If a node pair has asameness > 0 the nodes become
a cluster. The authors of [6] introduce a clustering quality
measure,DS (degree/separation), wheredegree is the av-
erage number of nets incident to each module of the cluster
and having at least two pins in the cluster andseparation

is the average length of a shortest path between two nodes
in the clustering, infinity if not connected.

Using theDS measure the RW-ST method is compared
against the matching based compaction(MBC) method
of[1]. It was found that the clustering produced by RW-
ST had over30% betterDS qualities than those produced
by MBC for large circuits. To further evaluate the quality
of the clusters produced by RW-ST, FM was run on the re-
sulting clustering graphs. MBC was found to produce very
poor cutset results compared to that of RW-ST. The final
experiment consisted of using the partition results obtained
above as an initial partition and rerunning FM on the en-
tire unclustered netlist. It was found that MBC produced
cutset results on average12% better than FM while RW-ST
produced cutset results17% better than FM. Interestingly,
vastly superior initial partitions produced by RW-ST did not
translate to a large improvement in the final partitions.

An algorithm by Huang et. al.[11] also strives to find
a good initial partition for the FM algorithm. The parti-
tioning problem is formulated as a QP problem with linear
constraints. Obviously, the resulting assignments must be
integer. A solution is obtained from the QP by removing
all constraints and solving the QP using a gradient decent
algorithm. The algorithm is calledGFM , orGFMr if cell
replication is allowed.

Let th = (th1;1; : : : ; t
h
1;n; : : : ; t

h
K;1; : : : ; t

h
K;n) be the

listing of assignments whereK is the number of par-
titions, n is the number of cells, andh is the present
iteration number. It is unlikely that the values ofth

will be integer or meet the constraints. Therefore, solve
max
P

i�b�K

P
1�i�n xb;it

h
b;i subject to the size con-

straints of each partition wherexb;i is the assignment vari-
able of celli to partitionb. If replication of cells is not al-
lowed there is an additional size constraint of

PK

b=1 xb;i =
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1 8nodei 2 V whereV is the set of nodes. After a so-
lution for xb;i is found, FM is applied to generate a better
solution. If another iteration of the algorithm is desired a
new gradient is determined and the process repeats.GFM

shows improvements of15% over PARABOLI[14] in terms
of cutset size.

Another method to improve upon iterative methods,
calledCLIP (CLuster oriented Iterative improvement Par-
titioner)is introduced in[4]. CLIP alters the way in which
cell gains are determined in the method, encouraging con-
sideration of cells connected to recently moved cells. This
promotes the movement of an entire densely-connected
cluster into one partition.

A new technique for choosing the most productive cell to
move is introduced in[3] and is called PROP (PRObalistic
Partitioner). PROP is based on the assumption that a num-
ber of nodes will have similar gain values and a tie should
be broken by considering thepotential gain associated with
each node. That is, the decrease in cutset that is not imme-
diately realized but has a good chance of occurring in future
moves.

Partitioning using analytical placement techniques is
proposed in a paper by F.M. Johannes, et al[14]. This
technique, calledPARABOLI, solves a one dimensional
placement problem that has a linear objective function
min
Pn

i=1

Pn

j=1 aij jxi � xj j, wheren is the number of
cells, aij is the sum of the edge weights connecting edge
weights connecting cellsi andj. After the placement solu-
tion is obtained theRatio Cut(RC), is determined for every
possible cut position between two cells. TheRC is found
by RC = CLR

jLj_jRj
whereCLR is the cutset size of the two

partitions andjLj andjRj are the set size of each partition.
The minimum ofRC is theMinimum Ratio CutMRC and
produces the optimal partition results.

A circuit modeled as a network flow problem can be par-
titioned using max-flow min-cut techniques. This method
will find a partition, not necessarily balanced, in polynomial
time. Repeatedly applying the max-flow technique will pro-
duce a balanced bi-partition but it may take as many itera-
tions as number of nodes[7].

Solving the k-way partitioning problem by using inte-
ger programming is proposed by Kuh, et. al.[17]. A cost
function pij representing the cost of assigning modulej
to partitioni is minimized according to timing and capac-
ity constraints. Solving thek-way partitioning problem
where the target device is known is presented by Sawka and
Thomas[16]. They use a set cover based approach (SCP) to
achieve a multiway partition for look up table (LUT) based
FPGA’s.
3 Partitioning Under Timing and Area Con-

straints
Given a set ofn netlist modulesV = fv0; v2; : : : ; vn�1g

we represent the circuit as a hypergraphG = (V;E) with
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Figure 2. Hypergraphs and Graphs

n vertices and a setE � 2V of hyperedges or nets. The
number of hyperedgesjEj = m. The vertices in a hyper-
edgee 2 E are calledterminals of e. jej denotes the
cardinality of a hyperedgee. If all e 2 E have a cardinality
of 2, i.e. jej = 2, thenG is a graph. Figure 2 shows a
hypergraph and it’s representation as a graph.

Given a set ofn netlist modules the goal of partitioning
is to assign eachvi i = 0; : : : ; n� 1 to a specified number
k of segments. Ifk = 2, the problem becomes that of graph
bipartitioning. An edgee is cut if all the terminals ofe
are not within a single segment. The total number of cut
edges is called the size ofcutset. For Figure 2, if terminals
1 and2 are in one segment and terminals3 and4 are in
another the cutset is two for the hypergraph and three for
the graph. Typically one chooses to minimize the size of
cutset according to some pre-defined criteria. In this paper
we perform hypergraphbipartitioning under timing and area
constraints.

The input to the partitioner is a netlist and the area of
each netlist component. The optimized function is an ex-
act expression of the hypergraph cutset size. We optimize
the cutset size according to timing and capacity, i.e. area
constraints. The timing constraints are derived from theT

critical timing paths.
The CO problem is solved as an assignment problem.

We associate a variablexi; 0 � i � n � 1 for n compo-
nents. It is predetermined for bipartitioning that ifxi = 1
then modulei belongs to a partitioning segment and to the
complimentary one ifxi = 0. A solution to the NLP prob-
lem can result in non-integer assignment toxi which will
not form a feasible partitioning solution. Thus, fractional
assignment variables have to be rounded for generating a
feasible partitioning solution. We employ 0-1 rounding for
changing the fractional assignments to an integer form. This
can be done simply by choosing a value,median, and if
xi � median set xi to 1, 0 otherwise. Other methods
such as randomized rounding[15] can be employed to in-
telligently round the assignment variables. Given a frac-
tional assignment variable,xi = p, randomized rounding
will round this variable to 1 with a probabilityp.

3.1 Partitioning: Problem and Solution
Consider a three cell net, 1, 2, and 3 , letX = 1 if

the connection between cell 1 and cell 2 is cut, 0 otherwise
andY = 1 if the connection between cell 2 and cell 3 is
cut, 0 otherwise. An exact expression for the hypergraph
cutset size of this net requires a logical expression,X +
Y . Using DeMorgan’s Theorem this expression becomes
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X � Y . SinceX 2 f0; 1g andY 2 f0; 1g, this equation is
numericallyequal to:

1� (1�X)(1� Y ) (4)
Given the assignment of these three components,x1; x2; x3,
X andY is expressed as:

X = jx1 � x2j = x1(1� x2) + x2(1� x1) (5)

Y = jx2 � x3j = x2(1� x3) + x3(1� x2)

Combining equation 4 and 5 results in the exact expression
for hypercutset size between three components:

1� (1� x1(1� x2) + x2(1� x1)) � (6)

(1� x2(1� x3) + x3(1� x2)) =

x1 + x2 + x3 � x1x2 � x1x3 � x2x3

In general, the hypercutset size of a circuit is :

X

8r2M

(

jQrj�1X

i=1

(�1)i+1C
Qr

i � 2F

jQrjY

j=1

xj) (7)

whereQr is the set of assignment variables for all non I/O
components on netr, F equals 1 ifjQrj is even, 0 oth-
erwise, M is the set of nets, andCQr

i is the combinations
of the setQr takeni at a time. As with any partitioning
problem formulation, minimizing thecutsetsize is the most
important objective for our formulation. Note that for net
r with jQrj non I/O components, an expression with2jQrj

terms is required to fully express the hypergraph cutset size
for bipartitioning. A typical VLSI circuit contains majority
of nets that are small, i.e., two to four terminals. Hence,
in our implementation, for very large nets, we drop out the
terms in the above mentioned expression. However, we al-
ways account for an extra (possible) cut in our cutset size
evaluation process.
3.2 Timing Constraints

In addition to minimizing the cutset, we also consider the
timing constraints. In order to formulate timing constraints,
we consider a set ofcritical paths. In practice such a con-
straint can be user defined. However, for our solution, we
evaluate the firstT longest paths in the given circuit. The
T longest paths are found using Kundu’s longest path al-
gorithm [10]. This algorithm performs a levelized forward
traversal of nodes with a merge sort of delay values, fol-
lowed by a backward trace to identifyT longest paths. All
output cells are connected to apseudonode for this pur-
pose. The delay values on each edge is dependent on three
factors: fanout from the source cell, delay of the source cell,
and type of the source and destination cell. The source and
destination cell can be an input, output, or internal cell.

Let delayj be the delay of internal or I/O cellj, oj
the fanout to output cells,ij the fanout to internal cells,
� the delay due to driving an output cell,� the delay due
to driving an internal cell, andC the timing penalty for an
edge leaving the chip. The delay from input to output is
delayj + oj� + ij�, from input to internal cell or internal

cell to input isdelayj + oj� + ij� + C, and from internal
cell to internal cell isdelayj + oi� + ij�+ 2C if the edge
(i; j) is cut, 0 otherwise. Therefore the only variable in the
critical path delay is the cutset of internal edges on theT

critical paths.
Let xsource and xsink be the assignment of internal

source and sink cells. The timing penalty for an edge
between thesource andsink being cut is2C(xsource +
xsink � 2xsourcexsink). In general, thet’th, 1 � t � T ,
timing constraint is

Dt +
X

8(i;j)2Et

2C(xi + xj � 2xixj) � T imet (8)

whereDt is the delay on critical patht neglecting cut edges,
Et is the set of ordered pairs of edges traversed containing
non I/O cells on critical patht, andT imet is the maximum
delay allowed on critical patht. If Dt � T imet < Dt+2C
no edge on critical patht can be cut while ifT imet < Dt

the timing constraint cannot be met.

3.3 Area Constraints
Let ai; i = 0; : : : ; n � 1 be the area of celli. For bipar-

titioning, the area constraint on chip 1 and 2 is
n�1X

i=0

aixi � A1 and

n�1X

i=0

ai(1� xi) � A2 (9)

whereA1 andA2 are the capacity constraints on two par-
titioning segments, 1 and 2. Note thatA1 andA2 are not
necessarily the same.

3.4 Example
A short example is presented to illustrate these concepts.

The structure of the example circuit is in Figure 3. We de-
termine the cutset size, f, of this circuit from equation 7.

f =

2X

i=1

(�1)i+1C
fx0;x1;x2g
i + (10)

2X

i=1

(�1)i+1C
fx1;x2;x3g
i +

1X

i=1

(�1)i+1C
fx2;x4g
i �

2x2x4 +

1X

i=1

(�1)i+1C
fx3;x5g
i � 2x3x5 +

1X

i=1

(�1)i+1C
fx4;x5g
i � 2x4x5 +

1X

i=1

(�1)i+1C
fx4;x5g
i

�2x4x5 +

1X

i=1

(�1)i+1C
fx5;x6g
i � 2x5x6:

Expanding equation 10 results in the optimization function
in equation 11.

min : x0 + x1 + x2 � x0x1 � x0x2 � x1x2 +(11)

x1 + x2 + x3 � x1x2 � x1x3 � x2x3 + x2 +

x4 � 2x2x4 + x3 + x5 � 2x3x5 + x4 + x5 �

2x4x5 + x4 + x5 � 2x4x5 + x5 + x6 � 2x5x6
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Table 1. Example Circuit Delay Values

Src Sink Edge Delay
In2 0 delayIn2 + C + 1�

In1 4 delayIn1 + C + 2�+ �

In1 5 delayIn1 + C + 2�+ �

In1 Out3 delayIn1 + 2�+ �

0 1 delay0 + 2�+2C if edge (0,1) is cut
0 2 delay0 + 2�+2C if edge (0,2) is cut
1 2 delay1 + 2�+2C if edge (1,2) is cut
1 3 delay1 + 2�+2C if edge (1,3) is cut
2 4 delay2 + �+2C if edge (2,4) is cut
3 5 delay3 + �+2C if edge (3,5) is cut
4 5 delay4 + �+2C if edge (4,5) is cut
5 6 delay5 + �+ �+2C if edge (5,6) is cut
5 Out2 delay5 + �+ � + C

6 Out1 delay6 + � + C

Out1 pseudo delayOut1
Out2 pseudo delayOut2
Out3 pseudo delayOut3

To determine theT critical paths, we find the delay on
every edge. The resultant delay table appears in Table 1.

Let delayi = 1; i = 0; : : : ; 6, the delay of
I/O cells equal 5, C=2, �=5, and �=0.5. Ne-
glecting cutset size the two longest paths are
pseudo )Out1)6)5)4)2)1)0)In2 with a
delay of 28.0 andpseudo )Out1)6)5)3)1)0)In2
with a delay of 26.5. Utilizing equation 8 withD1 = 28:0
andD2 = 26:5 results in constraint 1, C1, and constraint
2, C2 whereT ime1 andT ime2 is the timing constraint on
critical path 1 and 2 respectively.

C1 : T ime1 � 28:0 + 2C(x6 + x5 � 2 � x6x5) + (12)

2C(x5 + x4 � 2 � x5x4) + 2C(x4 + x2 � 2 � x4x2) +

2C(x2 + x1 � 2 � x2x1) + 2C(x1 + x0 � 2 � x1x0)

C2 : T ime2 � 26:5 + 2C(x6 + x5 � 2 � x6x5) +

2C(x5 + x3 � 2 � x5x3) + 2C(x3 + x1 � 2 � x3x1) +

2C(x1 + x0 � 2 � x1x0)

Letting ai = 2; i = 0; : : : ; 6, we utilize equation 9 to
produce the area constraint for chip 1, C3, and chip 2, C4.

C3 : 2 � (x0 + x1 + x2 + x3 + x4 + x5 + x6) � A1(13)

C4 : 2(1� x0) + 2(1� x2) + 2(1� x3) + 2(1� x3)

+2(1� x4) + 2(1� x5) + 2(1� x6) � A2

4 Experimental Results
All code is written in C++ and fortran and compiled us-

ing g++ and f77, respectively. MINOS is written in fortran.
All benchmarks were tested on a Sparc 20 with 32 MB of
RAM running at 60MHz.

We partition six RT level benchmarks generated from be-
havioral VHDL descriptions. representing the structure of

4

3

5

6

1
0

2

Out2

Out1

Out3In1

In2

Figure 3. Example Circuit

six large circuits. We consider the ten most critical paths for
all benchmarks whose characteristics are in Table 2.

The results of bi-partitioning with timing and area con-
straints are in Tables 3 - 8. Table 9 shows the results of
bipartitioning with area constraints only. To compare the
partition quality of our method, results using the Fiduccia-
Mattheyses algorithm are also found in Table 9 where the
benchmark is first tested with the tight area constraint and
then the relaxed area constraint. The area constraint isP

n

i=1

ai

2
� 1:05 for tests one thru four and

P
n

i=1

ai

2
� 1:1 for

tests five thru eight. The columns headings in Table 2 - 9
are:

� Benchmark - The name of the benchmark circuit

� Total Area - Combined area of cells in the benchmark
in square microns

� Number Cells - Total number of cells in the benchmark

� Number Nets - Total number of nets in the benchmark

� Area Const. - Area constraint considered by MINOS

� C - Number of cut edges allowed on eachK longest
paths

� Exit Condition - The exit condition reported by MI-
NOS.

– Optimal - All constraints were met.
– Infeas. - The problem is infeasible.
– No-Imp. - The current point cannot be improved

upon.

� Run Time(sec) - The user + system CPU time in sec-
onds required by MINOS to solve the problem.

� Cutsize - The cutset size of the hypergraph representa-
tion after rounding

� FM Cutsize - Cutset size as determined by the
Fiduccia-Mattheyses algorithm in 1 run.

� Max Cut- The maximum number of cut edges on criti-
cal path1; : : : ; 10

Table 2. Benchmark Characteristics
Bench Total Number Number
Mark Area Cells Nets
TLC 2206942 33 93

decompress 2972054 35 164
compress 3267322 37 186

find 7858374 60 285
fifo 20628509 51 584

viper 25471959 81 792
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Table 3. TLC Results
Test Area C Exit Run Cut

# Const. Condition Time Size
1 1158645 0 Optimal 0.7 12
2 1158645 1 Optimal 0.8 11
3 1158645 2 Optimal 0.8 13
4 1158645 3 Optimal 0.7 11
5 1213818 0 Optimal 0.7 12
6 1213818 1 Optimal 0.7 12
7 1213818 2 Optimal 0.7 13
8 1213818 3 Optimal 0.7 12

Table 4. Decompress Results
Test Area C Exit Run Cut

# Const. Condition Time Size
1 1560328 0 Optimal 0.8 10
2 1560328 1 Optimal 0.8 6
3 1560328 2 Optimal 0.9 6
4 1560328 3 Optimal 0.9 6
5 1634630 0 Optimal 0.8 6
6 1634630 1 Optimal 0.8 6
7 1634630 2 Optimal 0.7 6
8 1634630 3 Optimal 0.8 6

4.1 Analysis
Intuitively, one would think that a relaxed area or timing

constraint would allow a more optimized cutset. In general
this is true for the test cases presented, but there are excep-
tions. When dealing with non-linear optimization functions
and constraints it is quite possible for the NLP tool to stop
in a local minimum. Different constraints and optimization
functions produce different search directions and therefore
different local minima.

For tests one thru four, i.e. the most restrictive area con-
straint, restricting the critical path constraint to 0 cuts re-
sulted in three out of the six benchmarks achieving non-
optimal results. When the critical path constraint is relaxed
to 1 cut per path four benchmarks achieved optimal results.
Further relaxation of the critical path constraint resulted in
one failure for critical path constraint equal to 2 and no fail-
ures for the critical path constraint equal to 3.

As expected, for tests five thru eight the total number
Table 5. Compress Results

Test Area C Exit Run Cut
# Const. Condition Time Size
1 1715344 0 Optimal 0.8 11
2 1715344 1 Optimal 0.9 11
3 1715344 2 Optimal 0.9 11
4 1715344 3 Optimal 0.8 11
5 1797027 0 No-Imp. 0.7 13
6 1797027 1 Optimal 0.7 13
7 1797027 2 Optimal 0.7 13
8 1797027 3 Optimal 0.7 13

Table 6. Find Results
Test Area C Exit Run Cut

# Const. Condition Time Size
1 4125646 0 No-Imp. 0.9 60
2 4125646 1 No-Imp. 0.9 60
3 4125646 2 No-Imp. 0.9 60
4 4125646 3 Optimal 0.8 60
5 4322106 0 Infeas. 2.4 83
6 4322106 1 Optimal 0.9 62
7 4322106 2 Optimal 1.7 58
8 4322106 3 Optimal 0.8 56

Table 7. Fifo Results
Test Area C Exit Run Cut

# Const. Condition Time Size
1 10829967 0 Infeas. 1.3 74
2 10829967 1 Optimal 1.3 137
3 10829967 2 Optimal 1.0 136
4 10829967 3 Optimal 1.7 106
5 11345680 0 Infeas. 1.4 74
6 11345680 1 Optimal 5.2 105
7 11345680 2 Optimal 2.3 89
8 11345680 3 Optimal 1.4 74

of suboptimal results decreased. This is due to the relaxed
area constraint used in these four tests. Restricting the crit-
ical path constraint to 0 cuts per path resulted in four out of
the six benchmarks achieving non-optimal results. Further
relaxing the critical path consraint allowed all benchmarks
to produce an optimal partition.

Table 9 shows that our method may also be a viable al-
ternative to heuristic partitioners such as the FM method.
Table 10 illustrates the impact of timing constraints on the
cutset size. Columns 3-6 give the increase in cutset size
for the four critical path constraint tests over a non-timing
constrained problem. The benchmark is first tested with the
tight area constraint and then the relaxed area constraint.
As can be seen from this table, considering timing caused
from a 48.9% increase to a 57.1% decrease and on average
a 0.2% decrease in cutset size for the benchmarks tested.

Table 8. Viper Results
Test Area C Exit Run Cut

# Const. Condition Time Size
1 13372778 0 Infeas. 4.6 189
2 13372778 1 Infeas. 3.5 205
3 13372778 2 Optimal 3.0 187
4 13372778 3 Optimal 3.4 174
5 14009577 0 Infeas. 5.0 183
6 14009577 1 Optimal 2.7 185
7 14009577 2 Optimal 6.7 171
8 14009577 3 Optimal 4.1 195
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Table 9. Optimizing Cutset Only
Bench Run Cut Max FM Cut
Mark Time Size Cut Size
TLC 0.4 11 3 12
TLC 0.5 12 1 12

decompress 0.5 14 1 33
decompress 0.8 6 0 21
compress 0.7 13 1
compress 0.8 14 2 12

find 0.8 55 4 49
find 0.8 54 4 39
fifo 0.9 92 3 120
fifo 1.0 91 3 73

viper 2.1 142 4 154
viper 2.3 166 9 139

Table 10. Impact on Cutset
Bench Increase in Cutset for
Mark Critical Path Constraint =: : :

0 1 2 3
TLC 0 -8.3% 8.3% -8.3%
TLC 0 0 8.3% 0

decompress -28.5% -57.1% -57.1% -57.1%
decompress 0 0 0 0
compress -15.4% -15.4% -15.4% -15.4%
compress N/A 7.1% 7.1% 7.1%

find N/A N/A N/A 9.1%
find N/A 14.8% 7.4% 3.7%
fifo N/A 48.9% 47.8% 15.2%
fifo N/A 15.4% -2.2% -18.7%

viper N/A N/A 31.7% 22.5%
viper N/A 17.4% 3.0% 17.5%

5 Concluding Remarks
In this paper we have presented a methodology that

can be used for effective partitioning of circuits by taking
multiple constraints into account. In general, partitioning
with multiple constraints is solved by lumping cost param-
eters such as area, timing, power, and more into one multi-
variable function. This has a tendency of not producing de-
signs that can meet the required constraints. We have pre-
sented test results for a variety of large real circuits when
taking area and timing costs into consideration. In general
we have observed that our methods are fairly compute in-
tensive and partitioning at gate level networks is not a pre-
ferred recommendation. However, partitioning using our
techniques at RT level of design may be very effective as
the size of a circuit’s netlist is fairly small.

Our on going work includes addressing the problem of
k-waypartitioning, hierarchical partitioning (when multiple
constraints like area, pin, cost, timing are very important for
designing VLSI Systems), and exploring methods for guid-
ing NLP solver to obtain better constraint satisfying local

minimas, perhaps close to global minimas.
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